RHS=1-sin^2x/(1+cotx)-cos^2x/(1+tanx)
=1-sin^3x/(sinx+sinxcotx)-cos^3x/(cosx+cosxtanx)
=1-(sin^3x/(sinx+cosx)+cos^3x/(cosx+sinx))
=1-((sin^3x+cos^3x)/(cosx+sinx))
=1-((sinx+cosx)(sin^2x-sinxcosx+cos^2x))/(cosx+sinx)
=1-(sin^2x-sinxcosx+cos^2x)
=1-(1-sinxcosx)
=sinxcosx
But LHS=1-sinxcosx
Hence LGS!=RHS
So it must be an equation which is
1-sinxcosx=sinxcosx
=>2sinxcosx=1
=>sin2x=sin(pi/2)
=>2x=npi+(-1)^n(pi/2)
=>x=(npi)/2+(-1)^n(pi/4)" where "n in ZZ