Question #0f589

1 Answer
Dec 26, 2016

RHS=1-sin^2x/(1+cotx)-cos^2x/(1+tanx)

=1-sin^3x/(sinx+sinxcotx)-cos^3x/(cosx+cosxtanx)

=1-(sin^3x/(sinx+cosx)+cos^3x/(cosx+sinx))

=1-((sin^3x+cos^3x)/(cosx+sinx))

=1-((sinx+cosx)(sin^2x-sinxcosx+cos^2x))/(cosx+sinx)

=1-(sin^2x-sinxcosx+cos^2x)

=1-(1-sinxcosx)

=sinxcosx

But LHS=1-sinxcosx

Hence LGS!=RHS

So it must be an equation which is

1-sinxcosx=sinxcosx

=>2sinxcosx=1

=>sin2x=sin(pi/2)

=>2x=npi+(-1)^n(pi/2)

=>x=(npi)/2+(-1)^n(pi/4)" where "n in ZZ