#y=cot^4 2x# Find #dy/dx#?
1 Answer
Explanation:
We use the chain rule twice to find the derivative.
Method 1:
Recall the chain rule: If
So, if
then
Method 2:
We can also write the chain rule using Leibniz notation :
#dy/dx=dy/(du) * (du)/dx# but we need another term, so we extend:
#color(white)(dy/dx)=dy/(du) * (du)/(dv) * (dv)/(dx)#
Given
Let
Then
We have
#dy/dx=dy/(du) * (du)/(dv) * (dv)/(dx)#
#color(white)(dy/dx)=4u^3 * (-csc^2 v) * 2#
And since
#color(white)(dy/dx)=4(cot v)^3 * (-csc^2 v) * 2#
But
#color(white)(dy/dx)=4(cot 2x)^3 * (-csc^2 2x) * 2#
#color(white)(dy/dx)=-8cot^3 2x * csc^2 2x#
Since