Write the expression as:
(x/(2+x))^(x-2) = 1/((x/(2+x))^(-(x-2))) = ((x+2)/x)^(2-x) = (1+2/x)^(2-x)
Now take the logarithm of this expression:
ln((x/(2+x))^(x-2)) = (2-x)ln(1+2/x) = 2ln(1+2/x)-xln(1+2/x)
We can see that:
lim_(x->oo) 2ln(1+2/x) = 2ln(1) = 0
so we can ignore this term.
Focusing on the other addendum we have:
xln(1+2/x) = 2 ln(1+2/x)/(2/x)
Substituting y=2/x we have lim_(x->oo) y(x) = 0 so that:
lim_(x->oo) ln(1+2/x)/(2/x) = lim_(y->0) ln (1+y)/y = 1
(you can find the explanation here )
Putting this together we can see that:
lim_(x->oo) ln((x/(2+x))^(x-2)) = lim_(x->oo) 2ln(1+2/x)-xln(1+2/x) = 0-2*1 =-2
Now note that:
e^(ln((x/(2+x))^(x-2)))=(x/(2+x))^(x-2)
so that:
lim_(x->oo) (x/(2+x))^(x-2) = lim_(x->oo) (e^(ln((x/(2+x))^(x-2))))
and as e^x is continuous in all of RR:
lim_(x->oo) (x/(2+x))^(x-2) = e^(lim_(x->oo) (ln((x/(2+x))^(x-2)))) = e^(-2) = 1/e^2