lim_(xrarroo)(sqrt((x^2-1)/(x^2+1)))^((2x+3)/(x-2))
Use exponential function and the natural logarithm:
lim_(xrarroo)e^ln((sqrt((x^2-1)/(x^2+1)))^((2x+3)/(x-2)))
Use the property ln(a^c) = (c)ln(a)
lim_(xrarroo)e^(((2x+3)/(x-2))ln((sqrt((x^2-1)/(x^2+1)))))
Do that again for the square root:
lim_(xrarroo)e^(1/2((2x+3)/(x-2))ln((x^2-1)/(x^2+1)))
Multiply the 1/2 into the fraction:
lim_(xrarroo)e^(((2x+3)/(2x-4))ln((x^2-1)/(x^2+1)))
Use of L'Hôpital's rule shows that both ((2x+3)/(2x-4)) and (x^2-1)/(x^2+1) to 1" as " x to oo
((d(2x+3))/dx)/((d(2x-4))/dx) = 2/2 = 1
((d(x^2-1))/dx)/((d(x^2-1))/dx) = (2x)/(2x) = 1
e^(1ln(1)) = 1
Therefore, the limit of the original expression is 1:
lim_(xrarroo)(sqrt((x^2-1)/(x^2+1)))^((2x+3)/(x-2)) = 1