lim_(x->oo)(sqrt((x^2-1)/(x^2+1)))^((2x+3)/(x-2))= ?

2 Answers
Apr 15, 2017

lim_(xrarroo)(sqrt((x^2-1)/(x^2+1)))^((2x+3)/(x-2))=1

Explanation:

lim_(xrarroo)(sqrt((x^2-1)/(x^2+1)))^((2x+3)/(x-2))

Use exponential function and the natural logarithm:

lim_(xrarroo)e^ln((sqrt((x^2-1)/(x^2+1)))^((2x+3)/(x-2)))

Use the property ln(a^c) = (c)ln(a)

lim_(xrarroo)e^(((2x+3)/(x-2))ln((sqrt((x^2-1)/(x^2+1)))))

Do that again for the square root:

lim_(xrarroo)e^(1/2((2x+3)/(x-2))ln((x^2-1)/(x^2+1)))

Multiply the 1/2 into the fraction:

lim_(xrarroo)e^(((2x+3)/(2x-4))ln((x^2-1)/(x^2+1)))

Use of L'Hôpital's rule shows that both ((2x+3)/(2x-4)) and (x^2-1)/(x^2+1) to 1" as " x to oo

((d(2x+3))/dx)/((d(2x-4))/dx) = 2/2 = 1

((d(x^2-1))/dx)/((d(x^2-1))/dx) = (2x)/(2x) = 1

e^(1ln(1)) = 1

Therefore, the limit of the original expression is 1:

lim_(xrarroo)(sqrt((x^2-1)/(x^2+1)))^((2x+3)/(x-2)) = 1

Apr 15, 2017

1

Explanation:

((x^2-1)/(x^2+1))^(1/2(2x+3)/(x-2))=((1-1/x^2)/(1+1/x^2))^(1/2((2+3/x)/(1-2/x)))=((1-1/x^2)/(1+1/x^2))^((1+3/(2x))/(1-2/x))

so

lim_(x->oo)(sqrt((x^2-1)/(x^2+1)))^((2x+3)/(x-2))=lim_(x->oo)((1-1/x^2)/(1+1/x^2))^((1+3/(2x))/(1-2/x))=1^1=1