Question #93462

1 Answer
Jan 30, 2017

tan(theta) = 5/3tan(θ)=53
sec(theta) = -sqrt(34)/3sec(θ)=343
cos(theta) = -(3sqrt(34))/34cos(θ)=33434
sin(theta) = -(5sqrt(34))/34sin(θ)=53434
csc(theta) = -sqrt(34)/5csc(θ)=345

Explanation:

Given: cot(theta) = 3/5 and sec(theta) < 0cot(θ)=35andsec(θ)<0

Use the identity tan (theta) = 1/cot(theta)tan(θ)=1cot(θ):

tan(theta) = 1/(3/5)tan(θ)=135

tan(theta) = 5/3tan(θ)=53

Use the identity 1 + tan^2(theta) = sec^2(theta)1+tan2(θ)=sec2(θ)

1 + (5/3)^2 = sec^2(theta)1+(53)2=sec2(θ)

sec^2(theta) = 34/9sec2(θ)=349

sec(theta) = -sqrt(34)/3sec(θ)=343

Use the identity cos(theta) = 1/sec(theta)cos(θ)=1sec(θ)

cos(theta) = -3/sqrt(34)cos(θ)=334

cos(theta) = -(3sqrt(34))/34cos(θ)=33434

Use the identity tan(theta) = sin(theta)/cos(theta)tan(θ)=sin(θ)cos(θ)

tan(theta)cos(theta) = sin(theta)tan(θ)cos(θ)=sin(θ)

sin(theta) = 5/3(-(3sqrt(34))/34)sin(θ)=53(33434)

sin(theta) = (-5sqrt(34))/34sin(θ)=53434

Use the identity csc(theta) = 1/sin(theta)csc(θ)=1sin(θ)

csc(theta) = 1/(-5/sqrt(34)csc(θ)=1534

csc(theta) = -sqrt(34)/5csc(θ)=345