How do you evaluate int sqrt(4 - x^2)/x^2?

1 Answer
Feb 1, 2017

The integral equals -sqrt(4 -x^2)/x - arcsin(x/2) + C

Explanation:

Use trigonometric substitution. We have an integral with a square root of the form sqrt(a^2 - x^2). Therefore, use the substitution x = asintheta.

In our case, a = 2. Our substitution will therefore be x = 2sintheta. Then dx- 2costhetad theta.

=>intsqrt(4 - (2sintheta)^2)/(2sintheta)^2 * 2costheta d theta

=>intsqrt(4 - 4sin^2theta)/(4sin^2theta) * 2costheta d theta

=>intsqrt(4(1 - sin^2theta))/(4sin^2theta) * 2costheta d theta

Use sin^2x + cos^2x = 1:

=>intsqrt(4cos^2theta)/(4sin^2theta) * 2costheta d theta

=>int(2costheta)/(4sin^2theta) * 2costheta d theta

=>int (4cos^2theta)/(4sin^2theta) d theta

=>int cos^2theta/sin^2theta d theta

Use cotx = 1/tanx = 1/(sinx/cosx) = cosx/sinx:

=>int cot^2theta d theta

Use cot^2x + 1 = csc^2x:

=>intcsc^2theta - 1 d theta

=>intcsc^2theta d theta- int 1 d theta

These are both trivial integrals.

=>-cottheta - theta + C

We know from our original substitution that x/2 = sintheta. We can deduce that theta = arcsin(x/2). Therefore, the side adjacent theta is sqrt(4 - x^2) in measure. Thus, cottheta = sqrt(4 - x^2)/x.

=>-sqrt(4 -x^2)/x - arcsin(x/2) + C

Hopefully this helps!