Question #17729

3 Answers
Feb 11, 2017

See the proof below

Explanation:

We need

sin2α=2sinαcosα

cos2α=12sin2α=2cos2α1

Therefore,

sin2αcosα(1+cos2α)(1+cosα)

=2sinαcosαcosα(1+12sin2α)(1+cosα)

=2sinα(1sin2α)2(1sin2α)(1+cosα)

=sinα1+cosα

=2sin(α2)cos(α2)1+2cos2α1

=2sin(α2)cos(α2)2cos2(α2)

=sin(α2)cos(α2)

=tan(α2)

QED

Feb 11, 2017

Proved R.H.S. = L.H.S.

Explanation:

We know sin2a=2sinacosaandcos2a=12sin2a and

also cosa = 2cos^(a/2) -1 and sina = 2 sin(a/2)cos(a/2).

Now put all values in the problem,

sin2a1+cos2a.cosa1+cosa

= 2sinacosa1+12sin2a.cosa1+cosa

= 2sinacos2a(22sin2a)(1+cosa)

= 2sinacos2a2(1sin2a)(1+cosa)

= sinacos2acos2a.(1+cosa)

= sina1+cosa

= 2sin(a2)cos(a2)1+2cos2(a2)1

= 2sin(a2)cos(a2)2cos2(a2)

= sin(a2)cos(a2)

= tan(a2)

Feb 11, 2017

Change only one side and stop, when it looks like the other side.

Explanation:

I will change only the left side.

Multiply the numerator and the denominator:

sin(2a)cos(a)1+cos(2a)+cos(a)+cos(2a)cos(a)=tan(a2)

Substitute cos2(a)sin2(a) for cos(2a):

sin(2a)cos(a)1+cos2(a)sin2(a)+cos(a)+(cos2(a)sin2(a))cos(a)=tan(a2)

Substitute 2sin(a)cos(a) for sin(2a)

(2sin(a)cos(a))cos(a)1+cos2(a)sin2(a)+cos(a)+(cos2(a)sin2(a))cos(a)=tan(a2)

Substitute cos2(a) for 1sin2(a):

(2sin(a)cos(a))cos(a)cos2(a)+cos2(a)+cos(a)+(cos2(a)sin2(a))cos(a)=tan(a2)

The numerator and denominator have a factor of cos(a) in common:

2sin(a)cos(a)cos(a)+cos(a)+1+cos2(a)sin2(a)=tan(a2)

Substitute cos2(a) for 1sin2(a):

2sin(a)cos(a)cos(a)+cos(a)+cos2(a)+cos2(a)=tan(a2)

Combine like terms in the denominator:

2sin(a)cos(a)2cos(a)+2cos2(a)=tan(a2)

There is a common factor of 2cos(a) in the numerator and denominator:

sin(a)1+cos(a)=tan(a2)

The above is a well know identity; you can substitute tan(a2) into left side, if you like. Q.E.D.