Question #8977f

1 Answer
Feb 16, 2017

1 + sqrt21+2

Explanation:

Call tan ( 67.5) = tan t.
tan (2t) = tan (135) = - 1
Use trig identity:
tan 2t = (2tan t)/(1 - tan^2 ttan2t=2tant1tan2t
In this case:
-1 = (2tan t)/(1 - tan^2 t)1=2tant1tan2t
Cross multiply and bring quadratic equation to standard form:
tan^2 t - 2tan t - 1 = 0tan2t2tant1=0
D = d^2 = b^2 - 4ac = 4 + 4 = 8D=d2=b24ac=4+4=8 --> d = +- 2sqrt2d=±22
There are 2 real roots:
tan t = -b/(2a) +- d/(2a) = 2/2 +- (2sqrt2)/2 = 1 +- sqrt2tant=b2a±d2a=22±222=1±2
Since tan (67.5) > 0, there for:
tan t = tan (67.5) = 1 + sqrt2tant=tan(67.5)=1+2