Given x=a+1/a and y=a-1/a calculate 5(x^2+y^2)^2 ?

2 Answers
Mar 10, 2017

given
x=5^(1/4) + 5^(-1/4)

=>x^2=(5^(1/4) + 5^(-1/4))^2=5^(1/2)+5^(-1/2)+2xx5^(1/4)xx5^(-1/4
and

, y=5^(1/4) - 5^(-1/4)

,=> y^2=(5^(1/4) - 5^(-1/4))^2=5^(1/2)+5^(-1/2)-2xx5^(1/4)xx5^(-1/4

So

x^2+y^2=2(5^(1/2)+5^(-1/2))

Hence

5(x^2+y^2)^2=5xx2(5^(1/2)+5^(-1/2))^2

=5xx2^2(sqrt5+1/sqrt5)^2

=5xx2^2((5+1)/sqrt5)^2

=cancel5xx2^2xx36/cancel5=144

Mar 10, 2017

See below.

Explanation:

x=a+1/a and y=a-1/a so

xy=a^2-1/a^2 but

(x+y)^2=x^2+y^2+2xy so

x^2+y^2=(2a)^2-2(a^2-1/a^2) = 2(a^2+1/a^2) and also

(x^2+y^2)^2=4(a^4+2+1/a^4)

substituting a^4=5 we get at

5(x^2+y^2)^2=5 cdot 4(5+2+1/5)=144