Question #3f390

2 Answers
Mar 16, 2017

-2/3sqrt(3)-sqrt(2)

Explanation:

Consider the just the denominator for a moment.

Demonstrating a principle by example:

a^2-b^2=(a-b)(a+b)

Now compare to:

(sqrt(12))^2-(sqrt(18))^2 = (sqrt(12)-sqrt(18))(sqrt(12)+sqrt(18))

So to remove the roots from the denominator we need to 'force' it to be (sqrt(12)-sqrt(18))(sqrt(12)+sqrt(18))
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Getting rid of the roots in the denominator")

Multiply by 1 and you do not change the value. However, 1 comes in many forms so you can change the way numbers look without changing their intrinsic value.

color(green)(2/(sqrt(12)-sqrt(18))color(red)(xx1))

color(green)(2/(sqrt(12)-sqrt(18))color(red)( xx(sqrt(12)+sqrt(18))/(sqrt(12+sqrt(18))

(2(sqrt(12)+sqrt(18)))/( (sqrt(12))^2-(sqrt(18))^2)

(2(sqrt(12)+sqrt(18)))/( 12-18)

(2(sqrt(12)+sqrt(18)))/( -6)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Simplifying")

(cancel(2)^1(sqrt(12)+sqrt(18)))/( -cancel(6)^3)

-1/3(sqrt(12)+sqrt(18))

But sqrt(12) = sqrt(3xx2^2)=2sqrt(3)
And sqrt(18)=sqrt(2xx3^2)=3sqrt(2)

-1/3(2sqrt(3)+3sqrt(2))

-2/3sqrt(3)-sqrt(2)

Mar 16, 2017

-2/3sqrt3-sqrt2

Explanation:

Multiply the numerator/denominator of the fraction by the color(blue)"conjugate" of the denominator.

The color(blue)"conjugate"" of "sqrt12-sqrt18" is "sqrt12color(red)(+)sqrt18

Considering the denominator.

color(orange)"Reminder " (sqrtaxxsqrta)=a

"Expand " (sqrt12-sqrt18)(sqrt12color(red)(+)sqrt18) using the FOIL method.

=12+cancel(sqrt18xxsqrt12)cancel(-sqrt18xxsqrt12)-18

=-6larrcolor(red)" rational denominator"

rArr2/(sqrt12-sqrt18)

=2/(sqrt12-sqrt18)xx(sqrt12+sqrt18)/(sqrt12+sqrt18)

=(2(sqrt12+sqrt18))/(-6)

=-1/3(sqrt12+sqrt18)

Simplifying sqrt12" and " sqrt18

sqrt12=sqrt(4xx3)=sqrt4xxsqrt3=2sqrt3

sqrt18=sqrt(9xx2)=sqrt9xxsqrt2=3sqrt2

rArr-1/3(sqrt12+sqrt18)

=-1/3(2sqrt3+3sqrt2)larr" this is acceptable"

=-2/3sqrt3-sqrt2