Question #c8ed2

1 Answer
May 27, 2017

12sinvartheta+5cosvartheta=13sin(vartheta+0.394)

Explanation:

12sinvartheta+5cosvartheta=rsin(vartheta+varphi)

rsin(vartheta+varphi)=rsinvarthetacosvarphi+rcosvarthetasinvarphi

Comparing coefficients, we find that rsinvarphi=5 and rcosvarphi=12

tanvarphi=(rsinvarphi)/(rcosvarphi)=5/12

varphi=arctan(5/12)=0.394^"rad"

Since neither the unit of angular measurement nor accuracy were specified, I am using the standard unit of angular measurement, radians, and 3 sf. for accuracy.

r=sqrt(sin^2varphi+cos^2varphi)=sqrt(5^2+12^2)=13

therefore12sinvartheta+5cosvartheta=13sin(vartheta+0.394)

I shall leave ii) for another contributor