Question #9bf04

1 Answer
Jun 17, 2017

(-3x-1)/(4(x^2+2x-1))+3/(4sqrt2)lnabs((x-sqrt2+1)/(x+sqrt2+1))+C3x14(x2+2x1)+342lnx2+1x+2+1+C

Explanation:

Rewriting the denominator:

int(3x^2+5x-1)/(x^2+2x-1)^2dx=int(3x^2+5x-1)/{(x^2+2x+1)-2}^2dx=int(3x^2+5x-1)/{(x+1)^2-2}^2dx3x2+5x1(x2+2x1)2dx=3x2+5x1{(x2+2x+1)2}2dx=3x2+5x1{(x+1)22}2dx

Let u=x+1u=x+1, implying that x=u-1x=u1 and du=dxdu=dx.

=int(3(u-1)^2+5(u-1)-1)/(u^2-2)^2du=int(3u^2-u-3)/(u^2-2)^2du=3(u1)2+5(u1)1(u22)2du=3u2u3(u22)2du

Now let u=sqrt2secthetau=2secθ. This implies that u^2-2=2sec^2theta-2=2tan^2thetau22=2sec2θ2=2tan2θ and that du=sqrt2secthetatanthetad thetadu=2secθtanθdθ.

=int(3(2sec^2theta)-sqrt2sectheta-3)/(2tan^2theta)^2(sqrt2secthetatanthetad theta)=3(2sec2θ)2secθ3(2tan2θ)2(2secθtanθdθ)

=sqrt2/4int(6sec^3theta-sqrt2sec^2theta-3sectheta)/tan^3thetad theta=246sec3θ2sec2θ3secθtan3θdθ

Multiplying through by cos^3theta/cos^3thetacos3θcos3θ:

=1/(2sqrt2)int(6-sqrt2costheta-3cos^2theta)/sin^3thetad theta=12262cosθ3cos2θsin3θdθ

=3/sqrt2intcsc^3thetad theta-1/2intcotthetacsc^2thetad theta-3/(2sqrt2)int(1-sin^2theta)/sin^3thetad theta=32csc3θdθ12cotθcsc2θdθ3221sin2θsin3θdθ

Note that 3/sqrt2-3/(2sqrt2)=3/(2sqrt2)32322=322:

=3/(2sqrt2)intcsc^3thetad theta-1/2intcotthetacsc^2thetad theta+3/(2sqrt2)intcscthetad theta=322csc3θdθ12cotθcsc2θdθ+322cscθdθ

Find the method for integrating csc^3thetacsc3θ here.

For the second integral, let v=cotthetav=cotθ so dv=-csc^2thetad thetadv=csc2θdθ.

The integral of cscthetacscθ is well known. For its derivation, see here.

=3/(2sqrt2)(-1/2)(cotthetacsctheta+lnabs(cottheta+csctheta))+1/2intvdv+3/(2sqrt2)lnabs(csctheta-cottheta)=322(12)(cotθcscθ+ln|cotθ+cscθ|)+12vdv+322ln|cscθcotθ|

Note that 1/2intvdv=1/2(v^2/2)=v^2/4=cot^2theta/412vdv=12(v22)=v24=cot2θ4.

=-3/(4sqrt2)cotthetacsctheta-3/(4sqrt2)lnabs(cottheta+csctheta)+3/(4sqrt2)lnabs(csctheta-cottheta)+1/4cot^2theta=342cotθcscθ342ln|cotθ+cscθ|+342ln|cscθcotθ|+14cot2θ

Our substitution was u=sqrt2secthetau=2secθ, implying that costheta=sqrt2/ucosθ=2u, which is a right triangle where the side adjacent to thetaθ is sqrt22, the hypotenuse is uu, and the side opposite thetaθ is sqrt(u^2-2)u22.

Thus, csctheta=u/sqrt(u^2-2)cscθ=uu22 and cottheta=sqrt2/sqrt(u^2-2)cotθ=2u22.

Also note that -3/(4sqrt2)lnabs(cottheta+csctheta)+3/(4sqrt2)lnabs(csctheta-cottheta)=3/(4sqrt2)lnabs((csctheta-cottheta)/(cottheta+csctheta))=3/(4sqrt2)lnabs((1-costheta)/(1+costheta))342ln|cotθ+cscθ|+342ln|cscθcotθ|=342lncscθcotθcotθ+cscθ=342ln1cosθ1+cosθ.

=-3/(4sqrt2)(sqrt2u)/(u^2-2)+3/(4sqrt2)lnabs((1-sqrt2/u)/(1+sqrt2/u))+1/4(2/(u^2-2))=3422uu22+342ln∣ ∣12u1+2u∣ ∣+14(2u22)

=-3/4(u/(u^2-2))+1/2(1/(u^2-2))+3/(4sqrt2)lnabs((u-sqrt2)/(u+sqrt2))=34(uu22)+12(1u22)+342lnu2u+2

=(-3u+2)/(4(u^2-2))+3/(4sqrt2)lnabs((u-sqrt2)/(u+sqrt2))=3u+24(u22)+342lnu2u+2

With u=x+1u=x+1:

=(-3x-1)/(4(x^2+2x-1))+3/(4sqrt2)lnabs((x-sqrt2+1)/(x+sqrt2+1))+C=3x14(x2+2x1)+342lnx2+1x+2+1+C