Question #498a4

1 Answer
Sep 1, 2017

y=-9/5y=95
x= 15x=15

Explanation:

The most straight forward way to resolve this particular is to get rid of the fraction as a first step.

1/5x+y=6/5" ".................Equation(1)
1/10x+1/3y=9/10" "..........Equation(2)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Consider Eqn(1)")

color(green)([x/5]color(white)("d")+color(white)("d")[ycolor(red)(xx1)]color(white)("d")=[6/5])

color(green)([x/5]color(white)("d")+color(white)("d")[ycolor(red)(xx5/5)]color(white)("d")=[6/5])

x/5+(5y)/5=6/5

Multiply both sides by 5

x+5y=6" "......................Equation(1_a)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

color(blue)("Consider Eqn(2)")

color(green)([x/10color(red)(xx1)]+[y/3color(red)(xx1)]=[9/10color(red)(xx1)] )

color(green)([x/10color(red)(xx3/3)]+[y/3color(red)(xx10/10)]=[9/10color(red)(xx3/3)] )

(3x)/30+(10y)/30=27/30

Multiply both sides by 30

3x+10y=27" "...........Equation(2_a)
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
color(blue)("Putting it all together")

x+5y=6" "..................Eqn(1_a)
3x+10y=27" "............Eqn(2_a)

Eqn(2_a) -(3xxEqn(1_a))

3x+10y=27" "larr" "Eqn(2_a)
ul(3x+15y=18)" "larr" "3xxEqn(1_a)
0x-color(white)(2)5y=9

Multiply both sides by (-1)

+5y=-9

Divide both sides by 5

y=-9/5" ".............Eqn(3)

I choose Eqn(1_a) it is works out more easily. You would still get the same answer if you used Eqn(2_a) but it would involve more work.

Using Eqn(3) substitute for y in Eqn(1_a)

color(green)(x+5color(red)(y)=6" "->" "x+(5color(red)(xx-9/5))=6

x-9=6

x=6+9=15

Tony B