What is the Maclaurin series for cos(sinx)?

1 Answer
Dec 9, 2017

cos(sinx) = 1 -1/2x^2 + ...

Explanation:

Let:

f(x) = cos(sinx) ..... [A]

The Maclaurin series is given by

f(x) = f(0) + (f'(0))/(1!)x + (f''(0))/(2!)x^2 + (f'''(0))/(3!)x^3 + ... (f^((n))(0))/(n!)x^n + ...

First Term:

f(0) = cos(sin0)=cos0=1

Second Term:

Differentiating [A] wrt x
f'(x) = -cos(x)*sin(sin(x)) ..... [B]
:. f'(0) = cos0 sin(sin0) =0

Differentiating [B] wrt x:

f''(x) = sin(x)sin(sin(x))-cos(x)^2cos(sin(x))
:. f''(0) = sin(0)sin(sin(0))-cos(0)^2cos(sin(0)) = -1

.... etc for higher derivatives

So, the power series is given by
f(x) = f(0) + (f'(0))/(1!) + (f''(0))/(2!) + (f'''(0))/(3!) + ...

:. f(x) = 1 + (0)/(1)x + (-1)/(2)x^2 + ...
\ \ \ \ \ \ \ \ \ \ \ \ = 1 -1/2x^2 + ...