How do I evaluate the indefinite integral inttan^2(x)dx∫tan2(x)dx ?
1 Answer
Jul 30, 2014
=tanx-x+c=tanx−x+c , wherecc is a constantUsing Trigonometric Identity, which is
sec^2x-tan^2x=1sec2x−tan2x=1
tan^2x=sec^2x-1tan2x=sec2x−1 Using this Trigonometric Identity in integration,
=int(sec^2x-1)dx=∫(sec2x−1)dx
=intsec^2xdx-intdx=∫sec2xdx−∫dx
=tanx-x+c=tanx−x+c , wherecc is a constant