How do I evaluate the indefinite integral inttan^2(x)dxtan2(x)dx ?

1 Answer
Jul 30, 2014

=tanx-x+c=tanxx+c, where cc is a constant

Using Trigonometric Identity, which is

sec^2x-tan^2x=1sec2xtan2x=1

tan^2x=sec^2x-1tan2x=sec2x1

Using this Trigonometric Identity in integration,

=int(sec^2x-1)dx=(sec2x1)dx

=intsec^2xdx-intdx=sec2xdxdx

=tanx-x+c=tanxx+c, where cc is a constant