Integrals of Trigonometric Functions
Key Questions
-
Recall:
#int{g'(x)}/{g(x)}dx=ln|g(x)|+C# (You can verify this by substitution
#u=g(x)# .)Now, let us look at the posted antiderivative.
By the trig identity
#tan x={sin x}/{cos x}# ,#int tan x dx=int{sin x}/{cos x}dx# by rewriting it a bit further to fit the form above,
#=-int{-sin x}/{cos x}dx# by the formula above,
#=-ln|cos x|+C# or by
#rln x=lnx^r# ,#=ln|cos x|^{-1}+C=ln|sec x|+C# I hope that this was helpful.
-
Since
#(tanx)'=sec^2x# ,we have
#int sec^2x dx=tan x +C# .I hope that this was helpful.
-
Since
#(ln|secx+tanx|)'={secxtanx+sec^2x}/{sec x+tanx}=secx# ,we have
#int secx dx=ln|secx+tanx|+C#
Since
#(-ln|cscx+cotx|)'=-{-cscxcotx-csc^2x}/{cscx+cotx}=cscx# ,we have
#int cscx dx=-ln|cscx+cotx|+C#
#int cotx dx=int{cosx}/{sinx}dx=ln|sinx|+C#
I hope that this was helpful.
-
Since
#(sinx)'=cosx# ,we have
#int cosx dx=sinx +C# .
Since
#(-cosx)'=sinx# ,we have
#int sinx dx=-cosx+C# .
I hope that this was helpful.
Questions
Introduction to Integration
-
Sigma Notation
-
Integration: the Area Problem
-
Formal Definition of the Definite Integral
-
Definite and indefinite integrals
-
Integrals of Polynomial functions
-
Determining Basic Rates of Change Using Integrals
-
Integrals of Trigonometric Functions
-
Integrals of Exponential Functions
-
Integrals of Rational Functions
-
The Fundamental Theorem of Calculus
-
Basic Properties of Definite Integrals