How do you find the integral of [sin2(πx)cos5(πx)]dx?

1 Answer
Oct 11, 2015

This belongs in your mathematical toolbox: sinmucosnudu with at least one of m,n odd.

Explanation:

sinmucosnudu with at least one of m,n odd.
Integrate by substitution. Do this by pulling off one from the odd power, then convert the remaining even power to the other function. Integrate the resulting polynomial in sinu or cosu term by term.

I=[sin2(πx)cos5(πx)]dx=[sin2(πx)cos4(πx)]cos(πx)dx

cos4(πx)=(cos2πx)2=(1sin2πx)2=12sin2πx+sin4πx

I=[sin2(πx)(12sin2πx+sin4πx)]cos(πx)dx

=[sin2πx2sin4πx+sin6πx]cos(πx)dx

=1π(u22u4+u6)du

=1π[sin3πx32sin5πx5+sin7πx7]+C