How do you find the integral of xcos(5x)dx?

2 Answers
Mar 23, 2017

Use integration by parts.
udv=uvvdu

Explanation:

Let u=x, then du=dx,dv=cos(5x)dx,andv=15sin(5x)

Substituting these values into the integration by parts equation:

xcos(5x)dx=x5sin(5x)15sin(5x)dx

The remaining integral on the right is trivial:

xcos(5x)dx=x5sin(5x)+125cos(5x)+C

Mar 23, 2017

125(5xsin5x+cos5x)+C

Explanation:

Use integration by parts udv=uvvdu

Let u=x,du=dx
Let dv=cos5xdx,v=cos5xdx

Let w=5x,dw=5dx
cos5xdx=15coswdw=15sin5x

Fill in the integration by parts:
xcos5xdx=15xsin5x15sin5xdx

To complete the last integration piece:
Let w=5x,dw=5dx

15sin5xdx=15155sin5xdx=125sinwdw=125(cos5x)=125cos5x

The final solution simplified:
xcos5xdx=15xsin5x+125cos5x+C=125(5xsin5x+cos5x)+C