How do you find the integral of tan^3(2x) sec^100(2x) dx?

1 Answer
Mar 23, 2018

I=1/204sec^102(2x)-1/200sec^100(2x)+C

Explanation:

We want to solve

I=inttan^3(2x)sec^100(2x)dx

Make a substitution u=2x=>(du)/dx=2

I=1/2inttan^3(u)sec^100(u)du

Use the identity color(green)(tan^2(x)=sec^2(x)-1

I=1/2inttan(u)(sec^2(u)-1)sec^100(u)du

Make a substitution s=sec(u)=>(ds)/(du)=sec(u)tan(u)

I=1/2int(s^2-1)s^99du

color(white)(I)=1/2ints^101-s^99du

color(white)(I)=1/204s^102-1/200s^100

Substitute back s=sec(u) and u=2x

I=1/204sec^102(2x)-1/200sec^100(2x)+C