How do you integrate (tanx)ln(cosx)dx(tanx)ln(cosx)dx?

1 Answer
Aug 1, 2016

= -1/2 ln^2 cos x + C=12ln2cosx+C

Explanation:

well the first pattern to note is this

d/dx (ln cos x) = 1/ cos x * - sin x = - tan xddx(lncosx)=1cosxsinx=tanx

And so

d/dx (ln^2 cos x) = 2 ln (cos x) *d/dx (ln cos x) ddx(ln2cosx)=2ln(cosx)ddx(lncosx)

= - 2 ln (cos x) tan x=2ln(cosx)tanx

So final tweak: d/dx( -1/2 ln^2 cos x ) = ln (cos x) tan xddx(12ln2cosx)=ln(cosx)tanx

And thus

int \ ln (cos x) tan x \ dx = int \ d/dx( -1/2 ln^2 cos x ) \ dx

= -1/2 ln^2 cos x + C

Or you can try find a sub

This one works well:

u = ln (cos x), du = - tan x \ dx

...because the integral becomes

int \tan x * u * -1/tan x \ du

=- int \ u \ du

=- u^2/2 + C

=- 1/2 ln^2 (cos x) + C