How do you find the antiderivative of cos4(x)dx?

1 Answer
Jun 28, 2016

You want to split it up using trig identities to get nice, easy integrals.

Explanation:

cos4(x)=cos2(x)cos2(x)

We can deal with the cos2(x) easily enough by rearranging the double angle cosine formula.

cos4(x)=12(1+cos(2x))12(1+cos(2x))

cos4(x)=14(1+2cos(2x)+cos2(2x))

cos4(x)=14(1+2cos(2x)+12(1+cos(4x)))

cos4(x)=38+12cos(2x)+18cos(4x)

So,

cos4(x)dx=38dx+12cos(2x)dx+18cos(4x)dx

cos4(x)dx=38x+14sin(2x)+132sin(4x)+C