What is the antiderivative of 1cosx(2+sinx)? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Anjali G Mar 5, 2017 ∫sinx+2cosxdx =ln|secx|+2ln|secx+tanx|+C Explanation: ∫sinx+2cosxdx ∫sinxcosx+2cosxdx =∫(tanx)dx+2∫(secx)dx =ln|secx|+2ln|secx+tanx|+C Use logarithm rules: =ln|secx|+ln(secx+tanx)2+C =ln∣∣(secx)(secx+tanx)2∣∣+C Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 3893 views around the world You can reuse this answer Creative Commons License