Question #4d0b1

1 Answer
Mar 1, 2017

int(sin^3x+cos^3x)/(sin^2 (2x) )dx

=int(sin^3x+cos^3x)/(2sinxcosx)^2 dx

=1/4(int(sin^3x/(sin^2xcos^2x)+cos^3x/(sin^2xcos^2x) )dx

=1/4(intsecxtanxdx+intcosx/sin^2xdx)

=1/4(intsecxtanxdx+intcotxcosecxdx)

=1/4(secx-cosec)+c

c = integration constant