Question #4d0b1 Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer P dilip_k Mar 1, 2017 int(sin^3x+cos^3x)/(sin^2 (2x) )dx =int(sin^3x+cos^3x)/(2sinxcosx)^2 dx =1/4(int(sin^3x/(sin^2xcos^2x)+cos^3x/(sin^2xcos^2x) )dx =1/4(intsecxtanxdx+intcosx/sin^2xdx) =1/4(intsecxtanxdx+intcotxcosecxdx) =1/4(secx-cosec)+c c = integration constant Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1348 views around the world You can reuse this answer Creative Commons License