How do you find the integral of int tan^3(2x) sec^5(2x) dxtan3(2x)sec5(2x)dx?

1 Answer
Oct 17, 2015

I = 1/2 [(sec^7 2x)/7-(sec^5 2x)/5] + CI=12[sec72x7sec52x5]+C

Explanation:

sec2x=t => sec2xtan2x*(2x)'dx=dt

2sec2xtan2xdx=dt

sec^2 2x=1+tan^2 2x => tan^2 2x = sec^2 2x -1

I = int tan^3 2x sec^5 2x dx

I = int tan^2 2x sec^4 2x tan2x sec 2x dx

I = 1/2 int (sec^2 2x -1) sec^4 2x (2tan2x sec 2x dx)

I = 1/2 int (t^2 -1) t^4 dt = 1/2 int (t^6 - t^4) dt = 1/2 [t^7/7-t^5/5] + C

I = 1/2 [(sec^7 2x)/7-(sec^5 2x)/5] + C