How do you find the antiderivative of cos(x)/(1-cos(x))cos(x)1cos(x)?

2 Answers
Jan 24, 2017

-x-2cot(x/2)+Cx2cot(x2)+C

Explanation:

I=intcos(x)/(1-cos(x))dxI=cos(x)1cos(x)dx

Rewriting the integral in a simpler form:

I=int((cos(x)-1)+1)/(1-cos(x))dxI=(cos(x)1)+11cos(x)dx

I=int(-(1-cos(x)))/(1-cos(x))dx+intdx/(1-cos(x))I=(1cos(x))1cos(x)dx+dx1cos(x)

I=-intdx+intdx/(1-cos(x))I=dx+dx1cos(x)

I=-x+intdx/(1-cos(x))I=x+dx1cos(x)

For the remaining integral, we'll use the tangent half-angle substitution which uses t=tan(x/2)t=tan(x2). The function cos(x)cos(x) can be expressed in terms of tan(x/2)tan(x2) as follows:

Wikimedia

That is, cos(x)=(1-tan^2(x/2))/(1+tan^2(x/2))=(1-tan^2(x/2))/sec^2(x/2)cos(x)=1tan2(x2)1+tan2(x2)=1tan2(x2)sec2(x2).

Also note that the substitution t=tan(x/2)t=tan(x2) implies dt=1/2sec^2(x/2)dxdt=12sec2(x2)dx.

Applying this to the integral gives:

I=-x+intdx/((1-(1-tan^2(x/2))/sec^2(x/2)))I=x+dx(11tan2(x2)sec2(x2))

I=-x+int(sec^2(x/2)dx)/(sec^2(x/2)-(1-tan^2(x/2))I=x+sec2(x2)dxsec2(x2)(1tan2(x2))

Rewriting sec^2(x/2)sec2(x2) as tan^2(x/2)+1tan2(x2)+1:

I=-x+int(sec^2(x/2)dx)/(2tan^2(x/2))I=x+sec2(x2)dx2tan2(x2)

I=-x+2int(1/2sec^2(x/2)dx)/(2tan^2(x/2))I=x+212sec2(x2)dx2tan2(x2)

Substituting:

I=-x+2intdt/t^2I=x+2dtt2

I=-x-2/t+CI=x2t+C

I=-x-2/tan(x/2)+CI=x2tan(x2)+C

I=-x-2cot(x/2)+CI=x2cot(x2)+C

Jan 24, 2017

-(x+cot(x/2) + C(x+cot(x2)+C

Explanation:

int cos x/(1-cos x) dx=int (1-2sin^2(x/2))/(2sin^2(x/2)) dxcosx1cosxdx=12sin2(x2)2sin2(x2)dx

=int1/2 csc^2(x/2) dx-int dx=12csc2(x2)dxdx

=intd(-cot(x/2) -x=d(cot(x2)x

=-(x+cot(x/2)) + C=(x+cot(x2))+C.