How do you find the antiderivative of cos(x)/(1-cos(x))cos(x)1−cos(x)?
2 Answers
Explanation:
I=intcos(x)/(1-cos(x))dxI=∫cos(x)1−cos(x)dx
Rewriting the integral in a simpler form:
I=int((cos(x)-1)+1)/(1-cos(x))dxI=∫(cos(x)−1)+11−cos(x)dx
I=int(-(1-cos(x)))/(1-cos(x))dx+intdx/(1-cos(x))I=∫−(1−cos(x))1−cos(x)dx+∫dx1−cos(x)
I=-intdx+intdx/(1-cos(x))I=−∫dx+∫dx1−cos(x)
I=-x+intdx/(1-cos(x))I=−x+∫dx1−cos(x)
For the remaining integral, we'll use the tangent half-angle substitution which uses
That is,
Also note that the substitution
Applying this to the integral gives:
I=-x+intdx/((1-(1-tan^2(x/2))/sec^2(x/2)))I=−x+∫dx(1−1−tan2(x2)sec2(x2))
I=-x+int(sec^2(x/2)dx)/(sec^2(x/2)-(1-tan^2(x/2))I=−x+∫sec2(x2)dxsec2(x2)−(1−tan2(x2))
Rewriting
I=-x+int(sec^2(x/2)dx)/(2tan^2(x/2))I=−x+∫sec2(x2)dx2tan2(x2)
I=-x+2int(1/2sec^2(x/2)dx)/(2tan^2(x/2))I=−x+2∫12sec2(x2)dx2tan2(x2)
Substituting:
I=-x+2intdt/t^2I=−x+2∫dtt2
I=-x-2/t+CI=−x−2t+C
I=-x-2/tan(x/2)+CI=−x−2tan(x2)+C
I=-x-2cot(x/2)+CI=−x−2cot(x2)+C