Evaluate the integral? : int \ sec^3x \ dx

1 Answer
Oct 8, 2017

int \ sec^3x \ dx = 1/2secxtanx - 1/2ln|secx+tanx| + C

Explanation:

We seek:

I = int \ sec^3x \ dx

We can write this as:

I = int \ sec x \ sec^2x \ dx

And now we can apply Integration By Parts:

Let { (u,=secx, => (du)/dx,=secxtanx), ((dv)/dx,=sec^2x, => v,=tanx ) :}

Then plugging into the IBP formula:

int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx

gives us

int \ (secx)(sec^2x) \ dx = (secx)(tanx) - int \ (tanx)(secxtanx) \ dx

:. I = secxtanx - int \ secxtan^2x \ dx
\ \ \ \ \ \ \ = secxtanx - int \ secx(sec^2x-1) \ dx
\ \ \ \ \ \ \ = secxtanx - int \ sec^3x- int \ secx \ dx
\ \ \ \ \ \ \ = secxtanx - I - ln|secx+tanx| + A
:. 2I = secxtanx - ln|secx+tanx| + A

Hence:

:. I = 1/2secxtanx - 1/2ln|secx+tanx| + C