Evaluate the integral? : int \ sec^3x \ dx
1 Answer
Oct 8, 2017
int \ sec^3x \ dx = 1/2secxtanx - 1/2ln|secx+tanx| + C
Explanation:
We seek:
I = int \ sec^3x \ dx
We can write this as:
I = int \ sec x \ sec^2x \ dx
And now we can apply Integration By Parts:
Let
{ (u,=secx, => (du)/dx,=secxtanx), ((dv)/dx,=sec^2x, => v,=tanx ) :}
Then plugging into the IBP formula:
int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx
gives us
int \ (secx)(sec^2x) \ dx = (secx)(tanx) - int \ (tanx)(secxtanx) \ dx
:. I = secxtanx - int \ secxtan^2x \ dx
\ \ \ \ \ \ \ = secxtanx - int \ secx(sec^2x-1) \ dx
\ \ \ \ \ \ \ = secxtanx - int \ sec^3x- int \ secx \ dx
\ \ \ \ \ \ \ = secxtanx - I - ln|secx+tanx| + A
:. 2I = secxtanx - ln|secx+tanx| + A
Hence:
:. I = 1/2secxtanx - 1/2ln|secx+tanx| + C