How do you find sec2x1sin2xdx?

2 Answers
May 26, 2018

Shown below

Explanation:

sin2x+cos2x=1cos2x=1sin2x

sec2xcos2xdx

sec2x1cos2xdx

sec4xdx

sec2xsec2xdx

(1+tan2x)sec2xdx

u=tanx

du=sec2xdx

1+u2du

u+13u3+c

=tanx+13tan3x+c

May 26, 2018

tan(x)+13tan3(x)+C

Explanation:

We have: sec2(x)1sin2(x) dx

= sec2(x)cos2(x) dx

= sec2(x)1sec2(x) dx

= sec2(x)sec2(x) dx

Then, the Pythagorean identity is cos2(x)+sin2(x)=1.

We can divide through by cos2(x) it to get:

1+tan2(x)=sec2(x)

Let's apply this rearranged identity to our integral:

= (1+tan2(x))sec2(x) dx

Now, let's use u-substitution, where u=tan(x)du=sec2(x) dx:

= (1+u2) du

= 1 du+ u2 du

=u+13u3+C

Finally, we can substitute tan(x) in place of u:

=tan(x)+13tan3(x)+C