Question #e1ae5
1 Answer
Explanation:
First, let's find the indefinite integral
sin^2(x) = (1-cos(2x))/2 sin(2x) = 2sin(x)cos(x)
=16intsin^2(x)(1/2sin(2x))^2dx
=4intsin^2(x)sin^2(2x)dx
=4int(1-cos(2x))/2sin^2(2x)dx
=2int(sin^2(2x)-sin^2(2x)cos(2x))dx
=2intsin^2(2x)dx - 2intsin^2(2x)cos(2x)dx
Let's evaluate these integrals separately.
=intdx - intcos(4x)dx
=x-sin(4x)/4+C
For the second integral, we make the substitution
Then
=u^3/3+C
=sin^3(2x)/3+C
Putting the above together, we get
= 2intsin^2(2x)dx - 2intsin^2(2x)cos(2x)dx
=x-sin(4x)/4-sin^3(2x)/3+C
We can now evaluate the definite integral.
=(pi/4-sin(pi)/4-sin^3(pi/2)/3)
-(0-sin(0)/4-sin^3(0)/3)
=pi/4-0/4-1/3-0+0+0
=pi/4-1/3