Question #e1ae5

1 Answer
Dec 10, 2016

int_0^(pi/4)16sin^4(x)cos^2(x)dx=pi/4-1/3

Explanation:

First, let's find the indefinite integral int16sin^4(x)cos^2(x)dx. To do so, we will make use of the formulas

  • sin^2(x) = (1-cos(2x))/2
  • sin(2x) = 2sin(x)cos(x)

int16sin^4(x)cos^2(x)dx = 16intsin^2(x)(sin(x)cos(x))^2dx

=16intsin^2(x)(1/2sin(2x))^2dx

=4intsin^2(x)sin^2(2x)dx

=4int(1-cos(2x))/2sin^2(2x)dx

=2int(sin^2(2x)-sin^2(2x)cos(2x))dx

=2intsin^2(2x)dx - 2intsin^2(2x)cos(2x)dx

Let's evaluate these integrals separately.


2intsin^2(2x)dx = 2int(1-cos(4x))/2dx

=intdx - intcos(4x)dx

=x-sin(4x)/4+C


For the second integral, we make the substitution

u = sin(2x) => du = 2cos(2x)dx

Then

2intsin^2(2x)cos(2x)dx = intu^2du

=u^3/3+C

=sin^3(2x)/3+C


Putting the above together, we get

int16sin^4(x)cos^2(x)dx

= 2intsin^2(2x)dx - 2intsin^2(2x)cos(2x)dx

=x-sin(4x)/4-sin^3(2x)/3+C

We can now evaluate the definite integral.

int_0^(pi/4)16sin^4(x)cos^2(x)dx = [x-sin(4x)/4-sin^3(2x)/3]_0^(pi/4)

=(pi/4-sin(pi)/4-sin^3(pi/2)/3)

-(0-sin(0)/4-sin^3(0)/3)

=pi/4-0/4-1/3-0+0+0

=pi/4-1/3