How do you find the integral of int (sinx)^4(cosx)^2dx(sinx)4(cosx)2dx?

1 Answer
Mar 21, 2018

int sin^4xcos^2x dx = (cosx(8sin^5x-2sin^3x-3sinx))/48 +(3x)/48+Csin4xcos2xdx=cosx(8sin5x2sin3x3sinx)48+3x48+C

Explanation:

Use the trigonometric identity:

cos^2x = 1-sin^2xcos2x=1sin2x

int sin^4xcos^2x dx = int sin^4x(1-sin^2x)dxsin4xcos2xdx=sin4x(1sin2x)dx

and the linearity of the integral:

int sin^4xcos^2x dx = int sin^4xdx-int sin^6xdxsin4xcos2xdx=sin4xdxsin6xdx

Solve now:

int sin^6xdx = int sin^5sinx dxsin6xdx=sin5sinxdx

integrating by parts:

int sin^6xdx = int sin^5 d(-cosx) sin6xdx=sin5d(cosx)

int sin^6xdx = -sin^5x cosx + 5 int sin^4 cos^2xdx sin6xdx=sin5xcosx+5sin4cos2xdx

int sin^6xdx = -sin^5x cosx + 5 int sin^4 (1-sin^2x)dx sin6xdx=sin5xcosx+5sin4(1sin2x)dx

int sin^6xdx = -sin^5x cosx + 5 int sin^4 dx -5 int sin^6xdx sin6xdx=sin5xcosx+5sin4dx5sin6xdx

int sin^6xdx = -(sin^5x cosx)/6 + 5/6 int sin^4 dx sin6xdx=sin5xcosx6+56sin4dx

And then:

int sin^4xdx = int sin^3 d(-cosx) sin4xdx=sin3d(cosx)

int sin^4xdx = -sin^3x cosx + 3 int sin^2 cos^2xdx sin4xdx=sin3xcosx+3sin2cos2xdx

int sin^4xdx = -sin^3x cosx + 3 int sin^2 (1-sin^2x)dx sin4xdx=sin3xcosx+3sin2(1sin2x)dx

int sin^4xdx = -sin^3x cosx + 3 int sin^2 dx -3 int sin^6xdx sin4xdx=sin3xcosx+3sin2dx3sin6xdx

int sin^4xdx = -(sin^4x cosx)/4+ 3/4 int sin^2 dx sin4xdx=sin4xcosx4+34sin2dx

Finally:

int sin^2 dx = int (1-cos2x)/2 dx = x/2 -sin(2x)/4+Csin2dx=1cos2x2dx=x2sin(2x)4+C

int sin^2 dx = (x-sinxcosx)/2+Csin2dx=xsinxcosx2+C

Putting partial results together:

int sin^4xcos^2x dx = int sin^4xdx-int sin^6xdxsin4xcos2xdx=sin4xdxsin6xdx

int sin^4xcos^2x dx = int sin^4xdx +(sin^5x cosx)/6 - 5/6 int sin^4 dx sin4xcos2xdx=sin4xdx+sin5xcosx656sin4dx

int sin^4xcos^2x dx = +(sin^5x cosx)/6 + 1/6 int sin^4 dx sin4xcos2xdx=+sin5xcosx6+16sin4dx

int sin^4xcos^2x dx = +(sin^5x cosx)/6 -(sin^4x cosx)/24+3/48(x-sinxcosx)+Csin4xcos2xdx=+sin5xcosx6sin4xcosx24+348(xsinxcosx)+C

int sin^4xcos^2x dx = (cosx(8sin^5x-2sin^3x-3sinx))/48 +(3x)/48+Csin4xcos2xdx=cosx(8sin5x2sin3x3sinx)48+3x48+C