What is the integral of int sin^2(πx / 2)?

1 Answer
Mar 14, 2017

1/2x-1/(2pi)sin(pix)+C

Explanation:

Use the form of the cosine double-angle identity with sine in it:

cos(2alpha)=1-2sin^2(alpha)

sin^2(alpha)=1/2(1-cos(2alpha))

Which implies that:

sin^2((pix)/2)=1/2(1-cos(pix))

Then:

intsin^2((pix)/2)dx=1/2int(1-cos(pix))dx

Integrating both of these, and integrating cos(pix) with substitution:

=1/2intdx-1/2intcos(pix)dx

Let u=pix to du=pidx:

=1/2x-1/(2pi)intcos(pix)(pidx)=1/2x-1/(2pi)intcos(u)du

=1/2x-1/(2pi)sin(pix)+C