How do you evaluate int (sin^3x)^(1/2)(cosx)^(1/2)(sin3x)12(cosx)12 from [0,pi/2][0,π2]?

1 Answer
Jan 22, 2018

int_0^(pi/2) (sinx)^(3/2)*(cosx)^(1/2)*dx=(pisqrt2)/8π20(sinx)32(cosx)12dx=π28

Explanation:

I=int_0^(pi/2) (sinx)^(3/2)*(cosx)^(1/2)*dxI=π20(sinx)32(cosx)12dx

=int_0^(pi/2) (sinx/cosx)^(3/2)*(cosx)^2*dxπ20(sinxcosx)32(cosx)2dx

=int_0^(pi/2) (tanx)^(3/2)*(cosx)^2*dxπ20(tanx)32(cosx)2dx

=int_0^(pi/2) (tanx)^(3/2)*(secx)^2/(secx)^4*dxπ20(tanx)32(secx)2(secx)4dx

=2int_0^(pi/2) (tanx)^(2)/[(tanx)^2+1]^2*(secx)^2/(2sqrt(tanx))*dx2π20(tanx)2[(tanx)2+1]2(secx)22tanxdx

After using y=sqrt(tanx)y=tanx and dy=(secx)^2/(2sqrt(tanx))*dxdy=(secx)22tanxdx transforms, II became

I=int_0^oo (2y^4*dy)/(y^4+1)^2I=02y4dy(y4+1)2

=1/2int_0^oo y*(4y^3*dy)/(y^4+1)^2120y4y3dy(y4+1)2

=1/2*[y*-1/(y^4+1)]_0^oo-1/2int_0^oo -1/(y^4+1)*dy12[y1y4+1]01201y4+1dy

=-1/2*[y/(y^4+1)]_0^oo+1/2int_0^oo dy/(y^4+1)12[yy4+1]0+120dyy4+1

=1/2int_0^oo dy/(y^4+1)120dyy4+1

After setting J=int_0^oo dy/(y^4+1)J=0dyy4+1, II must be equal to J/2J2

After using y=1/zy=1z and dy=-dz/z^2dy=dzz2 transforms, JJ became

J=int_oo^0 (-dz/z^2)/((1/z)^4+1)J=0dzz2(1z)4+1

=int_oo^0 (-z^2*dz)/(z^4+1)0z2dzz4+1

=int_0^oo (z^2*dz)/(z^4+1)0z2dzz4+1

=int_0^oo (y^2*dy)/(y^4+1)0y2dyy4+1

After collecting 2 integrals,

2J=int_0^oo ((y^2+1)*dy)/(y^4+1)2J=0(y2+1)dyy4+1

=1/2int_0^oo ((2y^2+2)*dy)/(y^4+1)120(2y2+2)dyy4+1

=1/2int_0^oo ((2y^2+2)*dy)/[(y^2+sqrt2*y+1)*(y^2-sqrt2*y+1)]120(2y2+2)dy(y2+2y+1)(y22y+1)

=1/2int_0^oo (dy)/(y^2+sqrt2*y+1)+1/2int_0^oo (dy)/(y^2-sqrt2*y+1)120dyy2+2y+1+120dyy22y+1

=1/2int_0^oo (2dy)/(2y^2+2sqrt2*y+2)+1/2int_0^oo (2dy)/(2y^2-2sqrt2*y+2)1202dy2y2+22y+2+1202dy2y222y+2

=sqrt2/2int_0^oo (sqrt2dy)/((sqrt2*y+1)^2+1)+sqrt2/2int_0^oo (sqrt2dy)/((sqrt2*y-1)^2+1)2202dy(2y+1)2+1+2202dy(2y1)2+1

=sqrt2/2*[arctan(sqrt2*y+1)]_0^oo+sqrt2/2*[arctan(sqrt2*y-1)]_0^oo22[arctan(2y+1)]0+22[arctan(2y1)]0

=(pisqrt2)/2π22

Thus,

I=J/2=(pisqrt2)/8I=J2=π28