What is int_(pi/8)^((11pi)/12) cos^2xsinx-tan^2xcotx dx?

1 Answer
Feb 28, 2017

0.60777

Explanation:

The first step is to separate the integrals.

int_(pi/8)^((11pi)/12) cos^2xsinxdx - int_(pi/8)^((11pi)/12) tan^2xcotxdx

int_(pi/8)^((11pi)/12) cos^2xsinxdx - int_(pi/8)^((11pi)/12) tanx dx

int_(pi/8)^((11pi)/12)cos^2xsinxdx - int_(pi/8)^((11pi)/12) sinx/cosx dx

Let u = cosx. Then du = -sinxdx -> dx= (du)/(-sinx). Adjust the bounds of integration accordingly.

int_(cos(pi/8))^(cos((11pi)/12)) u^2sinx * (du)/(-sinx) - int_(cos(pi/8))^(cos((11pi)/12)) sinx/u * (du)/(-sinx)

int_(cos(pi/8))^(cos((11pi)/12)) u^2 du - int_(cos(pi/8))^(cos((11pi)/12)) 1/u du

These are two trivial integrals.

[1/3u^3]_(cos(pi/8))^(cos((11pi)/12)) - [ln|u|]_cos(pi/8)^(cos((11pi)/12))

[1/3cos^3x]_(cos(pi/8))^(cos((11pi)/12)) - [ln|cosx|]_cos(pi/8)^(cos((11pi)/12)

This can be evaluated using the second fundamental theorem of calculus as

0.60777

Hopefully this helps!