How do you find int (cosx-sinx)^2(cscx/tanx) (cosxsinx)2(cscxtanx)?

1 Answer
Jul 22, 2018

I=-[cscx+2cosx+2ln|cscx-cotx|+cI=[cscx+2cosx+2ln|cscxcotx|+c

Explanation:

Here,

I=int(cosx-sinx)^2(cscx/tanx)dxI=(cosxsinx)2(cscxtanx)dx

=int(cos^2x-2sinxcosx+sin^2x)((1/sinx)/(sinx/cosx))dx=(cos2x2sinxcosx+sin2x)(1sinxsinxcosx)dx

=int(1-2sinxcosx)(cosx/sin^2x)dx=(12sinxcosx)(cosxsin2x)dx

=int{cosx/sin^2x-(2sinxcos^2x)/sin^2x}dx={cosxsin2x2sinxcos2xsin2x}dx

=int{1/sinx*cosx/sinx-(2cos^2x)/sinx}dx={1sinxcosxsinx2cos2xsinx}dx

=int{1/sinx*cosx/sinx-(2(1-sin^2x))/sinx}dx={1sinxcosxsinx2(1sin2x)sinx}dx

=int{cscxcotx-2/sinx+(2sin^2x)/sinx}dx={cscxcotx2sinx+2sin2xsinx}dx

=int{cscxcotx-2cscx+2sinx}dx={cscxcotx2cscx+2sinx}dx

=-cscx-2ln|cscx-cotx|-2cosx+c=cscx2ln|cscxcotx|2cosx+c

:.I=-[cscx+2cosx+2ln|cscx-cotx|+c