What is the integral of ( cos x +sec x )^2(cosx+secx)2?
1 Answer
Explanation:
Note that
Thus, we have:
intcos^2xdx+2intdx+intsec^2dx∫cos2xdx+2∫dx+∫sec2dx
The last two are common integrals:
=intcos^2xdx+2x+tanx=∫cos2xdx+2x+tanx
For the remaining integral, use the following identity:
cos(2x)=2cos^2x-1" "=>" "cos^2x=(cos(2x)+1)/2cos(2x)=2cos2x−1 ⇒ cos2x=cos(2x)+12
Thus the integral equals:
=1/2intcos(2x)dx+1/2intdx+2x+tanx=12∫cos(2x)dx+12∫dx+2x+tanx
=1/2intcos(2x)dx+1/2x+2x+tanx=12∫cos(2x)dx+12x+2x+tanx
=1/2intcos(2x)dx+5/2x+tanx=12∫cos(2x)dx+52x+tanx
For the first integral, let
=1/4int2cos(2x)dx+5/2x+tanx=14∫2cos(2x)dx+52x+tanx
=1/4intcos(u)du+5/2x+tanx=14∫cos(u)du+52x+tanx
=1/4sin(u)+5/2x+tanx+C=14sin(u)+52x+tanx+C
=1/4sin(2x)+5/2x+tanx+C=14sin(2x)+52x+tanx+C