What is the integral of ( cos x +sec x )^2(cosx+secx)2?

1 Answer
Aug 1, 2016

1/4sin(2x)+5/2x+tanx+C14sin(2x)+52x+tanx+C

Explanation:

Note that (cosx+secx)^2=cos^2x+2secxcosx+sec^2x=cos^2x+2+sec^2x(cosx+secx)2=cos2x+2secxcosx+sec2x=cos2x+2+sec2x.

Thus, we have:

intcos^2xdx+2intdx+intsec^2dxcos2xdx+2dx+sec2dx

The last two are common integrals:

=intcos^2xdx+2x+tanx=cos2xdx+2x+tanx

For the remaining integral, use the following identity:

cos(2x)=2cos^2x-1" "=>" "cos^2x=(cos(2x)+1)/2cos(2x)=2cos2x1 cos2x=cos(2x)+12

Thus the integral equals:

=1/2intcos(2x)dx+1/2intdx+2x+tanx=12cos(2x)dx+12dx+2x+tanx

=1/2intcos(2x)dx+1/2x+2x+tanx=12cos(2x)dx+12x+2x+tanx

=1/2intcos(2x)dx+5/2x+tanx=12cos(2x)dx+52x+tanx

For the first integral, let u=2xu=2x, so du=2dxdu=2dx.

=1/4int2cos(2x)dx+5/2x+tanx=142cos(2x)dx+52x+tanx

=1/4intcos(u)du+5/2x+tanx=14cos(u)du+52x+tanx

=1/4sin(u)+5/2x+tanx+C=14sin(u)+52x+tanx+C

=1/4sin(2x)+5/2x+tanx+C=14sin(2x)+52x+tanx+C