How do you find the integral of (cosx)^2/(sinx)?

1 Answer
Oct 11, 2015

Use cos^2x/sinx = cscx-sinx

Explanation:

cos^2x/sinx = (1-sin^2x)/sinx = 1/sinx - sin^2x/sinx = cscx-sinx

int sinx dx = -cosx +C

int cscx dx = -ln abs(cscx+cotx) +C You can either memorize this untegral of the trick to getting it:

int cscx dx = int cscx (cscx+cotx)/(cscx+cotx) dx

= - int (-csc^2x-cscx cotx)/(cscx+cotx)dx

= -int 1/u du = -ln abs u +C

I think you can finish int cos^2x/sinx dx from here.