How do you find the integral of cos^4t*sin^2t?

1 Answer
Jul 21, 2017

1/192(12t-sin6t-3sin4t+9sin2t)+C.

Explanation:

Let, I=intcos^4t*sin^2tdt.

Observe that, cos and sin both have even Power. So, we have

to convert them into Multiple Angles, using the Identities,

(1): cos^2theta=(1+cos2theta)/2, (2): sin^2theta=(1-cos2theta)/2,

(3): 2cosalphacosbeta=cos(alpha+beta)+cos(alpha-beta).

Now, cos^4t*sin^2t=1/4(4cos^2t*sin^2t)(cos^2t),

=1/4(sin^2(2t))(cos^2t),

=1/4{1/2(1-cos4t)}{1/2(1+cos2t)},

=1/16(1-cos4t+cos2t-cos4tcos2t),

=1/32{2-2cos4t+2cos2t-2cos4tcos2t},

=1/32{2-2cos4t+2cos2t-(cos6t+cos2t)},

=1/32{2-cos6t-2cos4t+3cos2t}.

Therefore, I=int1/32{2-cos6t-2cos4t+3cos2t}dt,

=1/32(2t-1/6sin6t-2*1/4sin4t+3*1/2sin2t),

rArr I=1/192(12t-sin6t-3sin4t+9sin2t)+C.

Enjoy Maths.!