How do you find the antiderivative of sin^3(x) cos^5(x) dxsin3(x)cos5(x)dx?

1 Answer
Nov 16, 2016

int sin^3xcos^5xdx = 1/4sin^4x-1/3sin^6x+1/8sin^8x + Csin3xcos5xdx=14sin4x13sin6x+18sin8x+C

Explanation:

Let u = sinx => (du)/dx = cosx u=sinxdudx=cosx, so int ...du=int ...cosxdx

Using the trig identity sin^2A+cos^2A-=1 we have;
u^2+cos^2x=1 => cos^2x=1-u^2

So we can substitute into int sin^3xcos^5xdx to get

int sin^3xcos^5xdx = int sin^3x(cos^2x)^2cosxdx
:. int sin^3xcos^5xdx = int u^3(1-u^2)^2du
:. int sin^3xcos^5xdx = int u^3(1-2u^2+u^4)du
:. int sin^3xcos^5xdx = int u^3-2u^5+u^7du
:. int sin^3xcos^5xdx = 1/4u^4-1/3u^6+1/8u^8 + C
:. int sin^3xcos^5xdx = 1/4(sinx)^4-1/3(sinx)^6+1/8(sinx)^8 + C
:. int sin^3xcos^5xdx = 1/4sin^4x-1/3sin^6x+1/8sin^8x + C

Substituting any other trig function would also yield the same result.