How do you integrate sin^5 (x) * cos^3 (x)?

1 Answer
Jun 24, 2016

Use one of the substitutions: u=sinx " " OR " " u=cosx

Explanation:

int sin^5x cos^3x dx = int sin^5xcos^2xcosx dx

= int sin^5x(1-sin^2x)cosx dx

= int sin^5x cosx dx - int sin^7xcosx dx

Substitute u = sinx to get

= 1/6 sin^6x - 1/8 sin^8x +C

OR

int sin^5x cos^3x dx = int sin^4xcos^3xsinx dx

= int (sin^2x)^2 cos^3x sinx dx

= int (1-cos^2x)^2 cos^3x sinx dx

= int (1-2cos^2x+cos^4x) cos^3x sinx dx

= int cos^3x sinx dx - int 2cos^5x sinx dx + int cos^7x sinx dx

Substitute u = cosx, so du = -sinx to get

= -1/4cos^4x+1/3cos^6x-1/8cos^8x +C