How do you find the integral of sin2(x)cos4(x)?

1 Answer
Oct 14, 2016

sin2(x)cos4(x)dx

=16sin5(x)cos(x)+724sin3(x)cos(x)116sin(x)cos(x)+116x+C

Explanation:

First note that:

sin2(x)cos4(x)=(1cos2(x))cos4(x)=cos6x+cos4(x)

ddxsin5(x)cos(x)=5sin4(x)cos2(x)sin6(x)

ddxsin5(x)cos(x)=sin4(x)(5cos2(x)sin2(x))

ddxsin5(x)cos(x)=(1cos2(x))(1cos2(x))(5cos2(x)(1cos2(x)))

ddxsin5(x)cos(x)=(cos4(x)2cos2(x)+1)(6cos2(x)1)

ddxsin5(x)cos(x)=6cos6(x)13cos4(x)+8cos2(x)1

ddxsin3(x)cos(x)=3sin2(x)cos2(x)sin4(x)

ddxsin3(x)cos(x)=sin2(x)(3cos2(x)sin2(x))

ddxsin3(x)cos(x)=(1cos2(x))(3cos2(x)(1cos2(x)))

ddxsin3(x)cos(x)=(cos2(x)+1)(4cos2(x)1)

ddxsin3(x)cos(x)=4cos4(x)+5cos2(x)1

ddxsin(x)cos(x)=cos2(x)sin2(x)=2cos2(x)1

Now we can choose multipliers to make the running sum match each coefficient of cos2k(x) in descending order:

ddx(16sin5(x)cos(x))=cos6(x)+136cos4(x)43cos2(x)+16

ddx(724sin3(x)cos(x))=76cos4(x)+3524cos2(x)724

ddx(116sin(x)cos(x))=18cos2(x)+116

ddx(116x)=116

summing to: cos6(x)+cos4(x)=sin2(x)cos4(x)

So:

sin2(x)cos4(x)dx

=16sin5(x)cos(x)+724sin3(x)cos(x)116sin(x)cos(x)+116x+C