How do you find the integral of sin2(x)cos4(x)?
1 Answer
=−16sin5(x)cos(x)+724sin3(x)cos(x)−116sin(x)cos(x)+116x+C
Explanation:
First note that:
sin2(x)cos4(x)=(1−cos2(x))cos4(x)=−cos6x+cos4(x)
ddxsin5(x)cos(x)=5sin4(x)cos2(x)−sin6(x)
ddxsin5(x)cos(x)=sin4(x)(5cos2(x)−sin2(x))
ddxsin5(x)cos(x)=(1−cos2(x))(1−cos2(x))(5cos2(x)−(1−cos2(x)))
ddxsin5(x)cos(x)=(cos4(x)−2cos2(x)+1)(6cos2(x)−1)
ddxsin5(x)cos(x)=6cos6(x)−13cos4(x)+8cos2(x)−1
ddxsin3(x)cos(x)=3sin2(x)cos2(x)−sin4(x)
ddxsin3(x)cos(x)=sin2(x)(3cos2(x)−sin2(x))
ddxsin3(x)cos(x)=(1−cos2(x))(3cos2(x)−(1−cos2(x)))
ddxsin3(x)cos(x)=(−cos2(x)+1)(4cos2(x)−1)
ddxsin3(x)cos(x)=−4cos4(x)+5cos2(x)−1
ddxsin(x)cos(x)=cos2(x)−sin2(x)=2cos2(x)−1
Now we can choose multipliers to make the running sum match each coefficient of
ddx(−16sin5(x)cos(x))=−cos6(x)+136cos4(x)−43cos2(x)+16
ddx(724sin3(x)cos(x))=−76cos4(x)+3524cos2(x)−724
ddx(−116sin(x)cos(x))=−18cos2(x)+116
ddx(116x)=116
summing to:
So:
∫sin2(x)cos4(x)dx
=−16sin5(x)cos(x)+724sin3(x)cos(x)−116sin(x)cos(x)+116x+C