What is (int cos^5x dx)/(intsinx dx) -intcos^5x/sinxdx?
1 Answer
Feb 3, 2017
Explanation:
Let:
I=intcos^5xdx J=intsinxdx K=intcos^5x/sinxdx
Then:
I=intcos^4x(cosx)dx=int(cos^2x)^2(cosx)dx
Rewriting with the Pythagorean identity:
I=int(1-sin^2x)^2(cosx)dx
Let
I=int(1-u^2)^2du=int(1-2u^2+u^4)du
Term by term:
I=u-2/3u^3+1/5u^5+C_1=sinx-2/3sin^3x+1/5sin^5x+C_1
Now:
J=-cosx+C_2
And:
K=intcos^5x/sinxdx
Using the form of
K=int((1-sin^2x)^2cosx)/sinxdx
Again,
K=int(1-2u^2+u^4)/udu=int(1/u-2u+u^3)du
Term by term:
K=ln(absu)-u^2+1/4u^4=ln(abssinx)-sin^2x+1/4sin^4x+C_3
Then the original expression is:
I/J-K=(sinx-2/3sin^3x+1/5sin^5x+C_1)/(-cosx+C_2)+ln(abssinx)-sin^2x+1/4sin^4x+C_3