What is (int cos^5x dx)/(intsinx dx) -intcos^5x/sinxdx?

1 Answer
Feb 3, 2017

(sinx-2/3sin^3x+1/5sin^5x+C_1)/(-cosx+C_2)+ln(abssinx)-sin^2x+1/4sin^4x+C_3

Explanation:

Let:

  • I=intcos^5xdx
  • J=intsinxdx
  • K=intcos^5x/sinxdx

Then:

I=intcos^4x(cosx)dx=int(cos^2x)^2(cosx)dx

Rewriting with the Pythagorean identity:

I=int(1-sin^2x)^2(cosx)dx

Let u=sinx so du=cosxdx:

I=int(1-u^2)^2du=int(1-2u^2+u^4)du

Term by term:

I=u-2/3u^3+1/5u^5+C_1=sinx-2/3sin^3x+1/5sin^5x+C_1

Now:

J=-cosx+C_2

And:

K=intcos^5x/sinxdx

Using the form of cos^5x from above:

K=int((1-sin^2x)^2cosx)/sinxdx

Again, u=sinx so du=cosxdx:

K=int(1-2u^2+u^4)/udu=int(1/u-2u+u^3)du

Term by term:

K=ln(absu)-u^2+1/4u^4=ln(abssinx)-sin^2x+1/4sin^4x+C_3

Then the original expression is:

I/J-K=(sinx-2/3sin^3x+1/5sin^5x+C_1)/(-cosx+C_2)+ln(abssinx)-sin^2x+1/4sin^4x+C_3