How do you evaluate the integral int dx/sqrt(a^2+x^2)? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Eddie Feb 24, 2017 = sinh^(-1) (x/a) + C Explanation: Because cosh^2 z - sinh^2 z = 1, I would go with the hyperbolic sub x = a sinh y, dx = a cosh y \ dy The integral becomes: int 1/sqrt(a^2+a^2 sinh^2 y)a cosh y \ dy = int 1/(a cosh y)*a cosh y \ dy = y + C = sinh^(-1) (x/a) + C And because sinh^(-1) z = ln ( z + sqrt(z^2 + 1)) = ln ( x/a + sqrt((x/a)^2 + 1)) + C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 27257 views around the world You can reuse this answer Creative Commons License