How do you evaluate the integral int dx/sqrt(a^2+x^2)?

1 Answer
Feb 24, 2017

= sinh^(-1) (x/a) + C

Explanation:

Because cosh^2 z - sinh^2 z = 1, I would go with the hyperbolic sub x = a sinh y, dx = a cosh y \ dy

The integral becomes:

int 1/sqrt(a^2+a^2 sinh^2 y)a cosh y \ dy

= int 1/(a cosh y)*a cosh y \ dy

= y + C

= sinh^(-1) (x/a) + C

And because sinh^(-1) z = ln ( z + sqrt(z^2 + 1))

= ln ( x/a + sqrt((x/a)^2 + 1)) + C