What is the antiderivative of (1+sinx)/(1-sinx)?

1 Answer
Aug 12, 2018

int(1+sin(x))/(1-sin(x))dx=2tan(x)+2/cos(x)-x+C, C in RR

Explanation:

I=int(1+sin(x))/(1-sin(x))dx

=int((1+sin(x))(1+sin(x)))/((1-sin(x))(1+sin(x)))dx

=int((1+sin(x))^2)/(1-sin(x)^2)dx

Because 1-sin(x)^2=cos(x)^2,

I=int(sin(x)^2+2sin(x)+1)/(cos(x)^2)dx

=int(sin(x)^2)/(cos(x)^2)dx+2intsin(x)/(cos(x)^2)dx+int1/(cos(x)^2)dx

=inttan(x)^2dx+2intsin(x)/(cos(x)^2)dx+intsec(x)^2dx

Now, let u=cos(x)

du=-sin(x)dx

I=inttan(x)^2dx+intsec(x)^2dx-2int1/u^2du

Also, tan(x)^2=sec(x)^2-1

I=2intsec(x)^2dx-int1dx-2int1/u^2du

=2tan(x)+2/u-x

=2tan(x)+2/cos(x)-x+C, C in RR

\0/ Here's our answer !