I=int(1+sin(x))/(1-sin(x))dx
=int((1+sin(x))(1+sin(x)))/((1-sin(x))(1+sin(x)))dx
=int((1+sin(x))^2)/(1-sin(x)^2)dx
Because 1-sin(x)^2=cos(x)^2,
I=int(sin(x)^2+2sin(x)+1)/(cos(x)^2)dx
=int(sin(x)^2)/(cos(x)^2)dx+2intsin(x)/(cos(x)^2)dx+int1/(cos(x)^2)dx
=inttan(x)^2dx+2intsin(x)/(cos(x)^2)dx+intsec(x)^2dx
Now, let u=cos(x)
du=-sin(x)dx
I=inttan(x)^2dx+intsec(x)^2dx-2int1/u^2du
Also, tan(x)^2=sec(x)^2-1
I=2intsec(x)^2dx-int1dx-2int1/u^2du
=2tan(x)+2/u-x
=2tan(x)+2/cos(x)-x+C, C in RR
\0/ Here's our answer !