What is int tan^3(x) sec^4(x/2) dx?
1 Answer
Explanation:
The first step here should be to eliminate the half-angle--even though it will crate a double angle in the tangent function, double-angles are easier to work with.
Let
Substituting these in, we see that:
inttan^3(x)sec^4(x/2)dx=2inttan^3(2u)sec^4(u)du
Note the tangent double-angle formula:
tan(2u)=(2tan(u))/(1-tan^2(u))
Therefore:
2inttan^3(2u)sec^4(u)du=2intsec^4(u)[(2tan(u))/(1-tan^2(u))]^3du
Now, cube the fraction and take a
=2intsec^2(u)((8tan^3(u)(1+tan^2(u)))/(1-tan^2(u))^3)du
Now, let
=16int(v^3(1+v^2))/(1-v^2)^3dv
Now, let
=-8int(-2v(v^2)(1+v^2))/(1-v^2)^3dv
Here, from
=-8int((1-w)(2-w))/w^3dw
Expanding:
=-8int(2-3w+w^2)/w^3dw
Splitting and writing with negative exponents, except for on the last one (since it's the natural logarithm integral:
=-16intw^-3dw+24intw^-2-8int1/wdw
Integrating using
=-16(w^-2/(-2))+24(w^-1/(-1))-8ln(absw)+C
Using
=8/(1-v^2)^2-24/(1-v^2)-8ln(abs(1-v^2))+C
Using
=8/(1-tan^2(u))^2-24/(1-tan^2(u))-8ln(abs(1-tan^2(u)))+C
Using
=8/(1-tan^2(x/2))^2-24/(1-tan^2(x/2))-8ln(abs(1-tan^2(x/2)))+C