How do you integrate tanx/(1+cosx)?

1 Answer
Jul 4, 2016

inttanx/(1+cosx)dx=intsinx/(cosx(1+cosx))dx

let

u=cosx
du=-sinxdx

partial fractions

-int(du)/(u(u+1))=-int(1/u-1/(u+1))du

-int(1/u-1/(u+1))du=int(du)/(u+1)-int(du)/u

-int(du)/u=-ln|u|

For int(du)/(u+1)

set
w=u+1
dw=du

int(dw)/w = ln|w|

Plug back in for u and x

ln|w|= ln|u+1|

So far we have

ln|u+1|-ln|u|

Remember u=cosx

ln|cosx+1|-ln|cosx|

And + C

inttanx/(1+cosx)dx=ln|cosx+1|-ln|cosx|+C