What is int cos(7x+pi)-sin(5x-pi) ?

1 Answer
Jun 18, 2016

-(sin7x)/7-(cos5x)/5+C

Explanation:

Before calculating the integral let us simplify the trigonometric expression using some trigonometric properties we have:

Applying the property of cos that says:
cos(pi+alpha)=-cosalpha

cos(7x+pi)=cos(pi+7x)
So,
color(blue)(cos(7x+pi)=-cos7x)

Applying two properties of sin that says:
sin(-alpha)=-sinalphaand
sin(pi-alpha)=sinalpha

We have:
sin(5x-pi)=sin(-(pi-5x))=-sin(pi-5x) since
sin(-alpha)=-sinalpha
-sin(pi-5x)=-sin5x
Sincesin(pi-alpha)=sinalpha
Therefore,
color(blue)(sin(5x-pi)=-sin5x)

First Substitute the simplified answers then compute the integral:

color(red)(intcos(7x+pi)-sin(5x-pi)
=int-cos(7x)-(-sin5x)
=int-cos7x+sin5x
=-intcos7x+intsin5x
color(red)(=-(sin7x)/7-(cos5x)/5+C ( where C is a constant number).