How do you find the integral of cos(x) / sqrt(1+sin^2(x)cos(x)1+sin2(x)?

2 Answers
May 7, 2018

ln|sinx+sqrt(1+sin^2x|)+Clnsinx+1+sin2x+C.

Explanation:

If we subst. sinx=t. :. cosxdx=dt.

:. intcosx/sqrt(1+sin^2x)dx,

=int1/sqrt(1+t^2)dt,

=ln|t+sqrt(1+t^2)|.

But, t=sinx.

:. I=ln|sinx+sqrt(1+sin^2x|)+C.

May 7, 2018

I=ln|sinx+sqrt(1+sin^2x)|+c

Explanation:

Here,

I=intcosx/sqrt(1+sin^2x)dx

Let, sinx=u=>cosxdx=du

I=int1/sqrt(1+u^2)du

=ln|u+sqrt(1+u^2)|+c

Subst,back, u=sinx

I=ln|sinx+sqrt(1+sin^2x)|+c