How do you find the integral of int [cot^5 (x) (sin^4(x) dx]? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Sasha P. Oct 7, 2015 I=ln|sinx|-sin^2x+sin^4x/4+C Explanation: int cot^5xsin^4xdx=int (cos^5x)/(sin^5x)sin^4xdx= int (cos^4xcosx)/(sinx)dx=int ((1-sin^2x)^2cosx)/sinx dx=I sinx=t => cosxdx=dt I=int (1-t^2)^2/tdt=int (1-2t^2+t^4)/tdt=int (1/t-2t+t^3)dt I=ln|t|-t^2+t^4/4+C I=ln|sinx|-sin^2x+sin^4x/4+C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 9356 views around the world You can reuse this answer Creative Commons License