How do you find the antiderivative of int sin^2xcos^2x dx? Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Narad T. Jan 11, 2017 The answer is =x/8-1/32sin4x+C Explanation: sin2x=2sinxcosx So, sin^2xcos^2x=1/4sin^2 (2x) cos4x=1-2sin^2(2x) sin^2(2x)=1/2(1-cos(4x)) So, intsin^2xcos^2xdx=1/8int(1-cos4x)dx =1/8(x-1/4sin4x)+C =x/8-1/32sin4x+C Answer link Related questions How do I evaluate the indefinite integral intsin^3(x)*cos^2(x)dx ? How do I evaluate the indefinite integral intsin^6(x)*cos^3(x)dx ? How do I evaluate the indefinite integral intcos^5(x)dx ? How do I evaluate the indefinite integral intsin^2(2t)dt ? How do I evaluate the indefinite integral int(1+cos(x))^2dx ? How do I evaluate the indefinite integral intsec^2(x)*tan(x)dx ? How do I evaluate the indefinite integral intcot^5(x)*sin^4(x)dx ? How do I evaluate the indefinite integral inttan^2(x)dx ? How do I evaluate the indefinite integral int(tan^2(x)+tan^4(x))^2dx ? How do I evaluate the indefinite integral intx*sin(x)*tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1619 views around the world You can reuse this answer Creative Commons License