How do you find the antiderivative of (cosx)(e^x)?
1 Answer
Explanation:
Let:
I = int \ cosx \ e^x \ dx
We can use integration by parts:
Let
{ (u,=cosx, => (du)/dx=-sinx), ((dv)/dx,=e^x, => v=e^x ) :}
Then plugging into the IBP formula:
int \ (u)((dv)/dx) \ dx = (u)(v) - int \ (v)((du)/dx) \ dx
gives us
int \ (cosx)(e^x) \ dx = (cosx)(e^x) - int \ (e^x)(-sinx) \ dx
:. I = e^xcosx + int \ e^x \ sinx \ dx .... [A]
At first it appears as if we have made no progress, as now the second integral is similar to
Let
{ (u,=sinx, => (du)/dx=cosx), ((dv)/dx,=e^x, => v=e^x ) :}
Then plugging into the IBP formula, gives us:
int \ (sinx)(e^x) \ dx = (sinx)(e^x) - int \ (e^x)(cosx) \ dx
:. int \ e^x \ sinx \ dx = e^xsinx - I
Inserting this result into [A] we get:
I = e^xcosx + e^xsinx - I + A
:. 2I = e^xcosx + e^xsinx + A
:. I = 1/2(e^xcosx + e^xsinx) + C