How do you integrate (1-(tanx)^2)/(secx)^2?
1 Answer
Dec 28, 2016
I got
Note the identity:
1 + tan^2x = sec^2x ,
so that:
int (1 - tan^2x)/(sec^2x)dx
int (2 - sec^2x)/(sec^2x)dx
int 2cos^2x - 1dx
Now, note another identity:
cos^2x = (1 + cos2x)/2
Now this is much simpler to integrate than we started with!
=> int 2((1 + cos2x)/2) - 1dx
= int cos2xdx
Therefore:
=> color(blue)(int (1 - tan^2x)/(sec^2x)dx = 1/2sin2x + C)