How do you integrate (1-(tanx)^2)/(secx)^2?

1 Answer
Dec 28, 2016

I got 1/2sin(2x) + C.


Note the identity:

1 + tan^2x = sec^2x,

so that:

int (1 - tan^2x)/(sec^2x)dx

int (2 - sec^2x)/(sec^2x)dx

int 2cos^2x - 1dx

Now, note another identity:

cos^2x = (1 + cos2x)/2

Now this is much simpler to integrate than we started with!

=> int 2((1 + cos2x)/2) - 1dx

= int cos2xdx

Therefore:

=> color(blue)(int (1 - tan^2x)/(sec^2x)dx = 1/2sin2x + C)